AQA

AQA Qualifications

GCSE
 MATHEMATICS

Unit 1 43601H
Mark scheme

43601H
June 2014

Version/Stage: v1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from aqa.org.uk

Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.

M Method marks are awarded for a correct method which could lead to a correct answer.

M dep A method mark dependent on a previous method mark being awarded.

A Accuracy marks are awarded when following on from a correct method. It is not necessary to always see the method. This can be implied.

B Marks awarded independent of method.
B dep A mark that can only be awarded if a previous independent mark has been awarded.

Q Marks awarded for Quality of Written Communication
ft Follow through marks. Marks awarded following a mistake in an earlier step.

SC Special case. Marks awarded within the scheme for a common misinterpretation which has some mathematical worth.
oe Or equivalent. Accept answers that are equivalent.
eg, accept 0.5 as well as $\frac{1}{2}$
[a,b] Accept values between a and b inclusive.

Examiners should consistently apply the following principles

Diagrams

Diagrams that have working on them should be treated like normal responses. If a diagram has been written on but the correct response is within the answer space, the work within the answer space should be marked. Working on diagrams that contradicts work within the answer space is not to be considered as choice but as working, and is not, therefore, penalised.

Responses which appear to come from incorrect methods

Whenever there is doubt as to whether a candidate has used an incorrect method to obtain an answer, as a general principle, the benefit of doubt must be given to the candidate. In cases where there is no doubt that the answer has come from incorrect working then the candidate should be penalised.

Questions which ask candidates to show working

Instructions on marking will be given but usually marks are not awarded to candidates who show no working.

Questions which do not ask candidates to show working

As a general principle, a correct response is awarded full marks.

Misread or miscopy

Candidates often copy values from a question incorrectly. If the examiner thinks that the candidate has made a genuine misread, then only the accuracy marks (A or B marks), up to a maximum of 2 marks are penalised. The method marks can still be awarded.

Further work

Once the correct answer has been seen, further working may be ignored unless it goes on to contradict the correct answer.

Choice

When a choice of answers and/or methods is given, mark each attempt. If both methods are valid then M marks can be awarded but any incorrect answer or method would result in marks being lost.

Work not replaced

Erased or crossed out work that is still legible should be marked.

Work replaced

Erased or crossed out work that has been replaced is not awarded marks.

Premature approximation

Rounding off too early can lead to inaccuracy in the final answer. This should be penalised by 1 mark unless instructed otherwise.

Q Answer	Mark	Comments	
1(a)	40	B1	

$\mathbf{1 (b)}$	Circles the outlier $(58,14)$	B 1	

1(c)	Links middle graph to strong positive correlation Links bottom graph to little or no correlation	B2	B1 for each

2(a)			\checkmark		B1	

2(b)	101×65 or 6565 or 64×75 or 4800 or 25×85 or 2125 or 10×95 or 950 or 14440	M1	Attempt at $f x$ using one correct midpoint 3610 implies M1M0A0
	(their $6565+$ their $4800+$ their $2125+$ their 950$) \div 200$	M1dep	Condone missing brackets eg 13494.75 implies M1M1A0
	72.2	A1	SC2 77.2 or 67.2 Accept 70 or 72 with fully correct working

2(c)	 \|	101	B2	B1	all frequencies correct or all tallies correct or two rows correct
	INH INITIII I	66			
		29			
	I\#1 I\# IIII	14			

2(d)	frequency polygon and histogram	B1	

3(a)	Appropriate key	B1	
	Stem 2, 3, 4, 5	B1	
	Leaves correct and ordered $\begin{array}{llllllll} 8 & 9 & & & & & \\ 1 & 3 & 5 & 6 & 7 & 7 & 8 \\ 2 & 4 & 6 & 9 & & & \\ 0 & 1 & & & & & \end{array}$	B1	
	Appropriate alignment of leaves	Q1ft	ft their single digit leaves Strand (ii) Logical organised working so row lengths show the distribution

3(b)	50	B2	B1 33 or 46 SC1 Answer of 34 (from 51 - 17)
4(a)	(0).5 or 50% or $\frac{1}{2}$	B1	oe fraction

4(b)	Refers to number of trials eg Spin the spinner 60 times (and record the result)	B1	Accept 'lots' or a number of trials greater than or equal to 30
Refers to theoretical probability eg Probability of each side $=1 / 10$ if fair or Works out expected number for each score using number of trials eg (For 60 trials) it should land on each number (approximately) 6 times if fair	B1	oe eg Should be (approx) same frequency for each number if fair or If the relative frequencies or (experimental) probabilities are not (roughly) equal it is biased	

Alternative method 1

$360-50$ or $310\left({ }^{\circ}\right)$	M1	Allow [86, 86.2](%25) or [0.86, 0.862]
15074×13.7 or [206 513, 206 514]	M1	oe
their $310 \div 360 \times$ their $206513 \ldots$ or	M1dep	oe their $86 \div 100 \times$ their $206513 \ldots$
$[177571,178025]$	A1	May be implied by correct method and 177000 or 178000 or 180000
180000	B1ft	ft any answer > 2sf correctly rounded

Alternative method 2

$360-50$ or $310\left({ }^{\circ}\right)$	M1	Allow [86, 86.2](%25) or [0.86, 0.862]
their $310 \div 360 \times 13.7$ their $86 \div 100 \times 13.7$ or $[11.78,11.81]$	M1	oe
$15074 \times$ their [11.78, 11.81]	M1dep	oe dep on second M
$[177571,178025]$	A1	May be implied by correct method and 177000 or 178 000 or 180 000
180000	B1ft	ft any answer > 2sf correctly rounded

Alternative method 3

$360-50$ or $310\left({ }^{\circ}\right)$	M1	Allow [86, 86.2](%25) or [0.86, 0.862]
their $310 \div 360 \times 15074$ or their $86 \div 100 \times 15074$ or $12980 . \ldots$ or $[12963,12994]$	M1	
$13.7 \times$ their $12980 . \ldots$	M1dep	
$[177571,178025]$	A1	May be implied by correct method and 177000 or 178000 or 180000
180000	ft any answer >2 sf correctly rounded	

Question 5 is continued on next page

5 cont	Alternative method 4		
	15074×13.7 or [206513, 206514$]$	M1	
	$\begin{aligned} & 50 \div 360 \times \text { their } 206513 \ldots \text { or } \\ & 28682 \ldots \text { or }[28498,28912] \end{aligned}$	M1	oe Condone [0.138, 0.14] for $50 \div 360$
	their 206513.8 - their $28682 . .$.	M1dep	oe
	[177 571, 178 025]	A1	May be implied by correct method and 177000 or 178000 or 180000
	180000	B1ft	ft any answer > 2sf correctly rounded
	Alternative method 5		
	15074×13.7 or [206513, 206514]	M1	
	$50 \div 360 \times 13.7$ or [1.89, 1.92]	M1	oe Condone [0.138, 0.14] for $50 \div 360$
	their $206513.8-15074 \times$ their 1.9...	M1dep	oe
	[177 571, 178 025]	A1	May be implied by correct method and 177000 or 178000 or 180000
	180000	B1ft	ft any answer >2 sf correctly rounded
	Alternative method 6		
	15074×13.7 or [206513, 206 514]	M1	
	$\begin{aligned} & 50 \div 360 \times 15074 \text { or } \\ & 2093 . \ldots \text { or }[2080,2110.4] \end{aligned}$	M1	oe Condone [0.138, 0.14] for $50 \div 360$
	their 206513.8 - $13.7 \times$ their 2093. ...	M1dep	oe
	[177 571, 178 025]	A1	May be implied by correct method and 177000 or 178000 or 180000
	180000	B1ft	ft any answer >2 sf correctly rounded

6(a)	$1.9(00) \times 10^{27}$	Q1	Strand (i) Correct notation

$\mathbf{6 (b)}$	$\left(5.97 \times 10^{24}\right) \div\left(1.08 \times 10^{21}\right)$ or $\frac{5.97 \times 10^{24}}{1.08 \times 10^{21}}$	M1	Condone omission of brackets
	$5527 .(\ldots)$	A1	oe May be implied by 5500,5530 or 5528
	5500 or 5530 or 5.5×10^{3} or 5.53×10^{3} oe	B1ft	ft their answer rounded to 2 or 3 sf SC2 5.5×10^{45} or 5.53×10^{45} SC1

7(a)	Yes and (women's median) 18 or Yes and lines at 16 and 18 on graph or Yes and (men) 2 minutes faster (on average)	B1	Condone [17.5, 18.5] for 18

$\mathbf{7 (b)}$	$25-14$ or 11	M1	Seen in either part or on graph Condone [13.5, 14.5] for 14 and $[24.5,25.5]$ for 25
	Yes and (women's IQR) 11 or Yes and (women's IQR) is 6 minutes less A1	Condone [10, 12] if both quartiles seen and in tolerance Must not refer to median	

8	1.24 or 124% or $\frac{124}{100}$ or $\frac{100}{124}$ seen	B1	
	$6014 \div 1.24$	M1	oe $6014 \div 124 \times 100$
	4850	A1	

9	Alternative method 1		
	$\begin{aligned} & 0.032 \times 500 \text { or } A=16 \text { or } \\ & 0.04 \times 500 \text { or } B=20 \text { or } \\ & 0.026 \times 500 \text { or } C=13 \text { or } \\ & 0.016 \times 500 \text { or } D=8 \text { or } \\ & 0.028 \times 500 \text { or } E=14 \end{aligned}$	M1	
	$\begin{aligned} & 0.04 \times 500 \text { or } 20 \\ & \text { and } \\ & 0.016 \times 500 \text { or } 8 \end{aligned}$	M1dep	Selects the frequencies for B and D
	12	A1	
	Alternative method 2		
	Subtracts any pair of relative frequencies	M1	
	$\begin{aligned} & 0.04-0.016(\times 500) \\ & \text { or } 0.024 \end{aligned}$	M1dep	
	12	A1	

10(a)	$\begin{aligned} & 2520 \div 126 \text { or } 20 \text { or } \\ & 126 \div 2520 \text { or } 0.05 \end{aligned}$				M1	oe	
	$44 \times$ their 20 or $44 \div$ their 0.05 or $4960 \div$ their 20 or $4960 \times$ their 0.05 or 880 or 248				M1dep	oe M2	$\begin{aligned} & 44 \div 126 \times 2520 \text { or } \\ & 4960 \div 2520 \times 126 \end{aligned}$
	2520	880	1560	4960	A1		
	126	44	78	248			

$\mathbf{1 0}(\mathbf{b})$	(minimum) 3785	B1	SC1 correct answers interchanged
	(maximum) 3794	B1	

| 11(a) | Fully correct | | |
| :--- | :--- | :--- | :--- | :--- |
| $\frac{7}{10}$ | $\frac{6}{9}$ | oe
 B2 all pairs of probabilities add to 1
 with one right hand side pair correct
 or
 four correct probabilities in correct
 positions
 B3 two correct probabilities in correct
 positions
 $\frac{3}{10}$ $\frac{7}{9}$ | Accept decimals or percentages rounded or
 truncated to 2 significant figures or better |

11(b)	their $\frac{7}{10} \times$ their $\frac{3}{9}$ or their $\frac{3}{10} \times$ their $\frac{7}{9}$ or $\frac{21}{90}$ or $\frac{7}{30} \quad$ oe	M1	Multiplies along one of the two relevant branches using their probabilities $(0<p<1)$
	their $\frac{7}{10} \times$ their $\frac{3}{9} \times 2$ or their $\frac{3}{10} \times$ their $\frac{7}{9} \times 2$ or their $\frac{7}{10} \times$ their $\frac{3}{9}+$ their $\frac{3}{10} \times$ their $\frac{7}{9}$	M1dep	Doubles their product of a correct branch or adds the products of the two relevant branches using their probabilities
	$\begin{aligned} & \frac{42}{90} \text { or } \frac{21}{45} \text { or } \frac{7}{15} \text { or } \\ & 0.4 \dot{6} \text { or } 0.47 \end{aligned}$	A1ft	ft their tree diagram if B2 scored in part (a) oe SC2 $\frac{21}{50}$ oe \quad SC1 $\quad \frac{21}{100}$ oe

